

2.21

4/3, 4/2 and 3/2 explosion-proof solenoid directional valve

Type G...WE6...L6X

Size (NG) 6 Up to 350 bar Up to 80 L/min

Contents	
Function and configuration	02
Ordering code	03
Spool symbols	03
Technical data	04
Electrical data	04
Characteristic curves	05
Performance limits	05
Unit dimensions	06

Features

-Directly operated type explosion protection directional valve is used as the standard type -DIN24 340 A type on the mounting surface ISO 4401 and CETOP-RP 121H -Wet-type DC explosion protection solenoid -90° rotatable explosion protection solenoid -Pressure-tight chamber does not need to be opened when coil is to be replaced

Function and configuration

GWE type directional control valve is the directional valve of explosion protection solenoid used to control start, stop and flow direction of oil fluid.

The directional control valves consist of housing (1), one or two solenoids (2), the control spool(3), and one or two return springs (4).

In the de-energised condition the control spool (3) is held in the neutral or initial position by means of return springs (4) (except for pulse spools). The control spool (3) is actuated via wet pin solenoids (2).

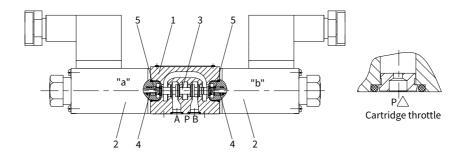
To guarantee satisfactory operation care should be taken to ensure that the solenoid pressure chamber is filled with oil.

The control spool(3) is moved to the expected position by solenoid(2) and pushing rod(5), and this gives free flow from P to A and B to T or P to B and A to T.

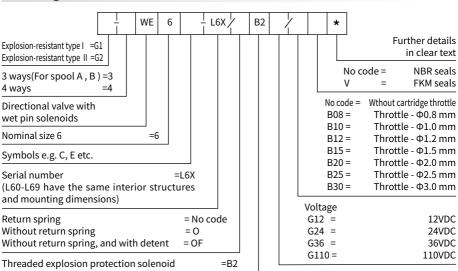
When the explosion protection solenoid(2) is powered off, control valve element (3) is pushed to the initial position by reset spring (4).

Type G4WE6...L6X/OB2...

(limited to functions A, C and D).

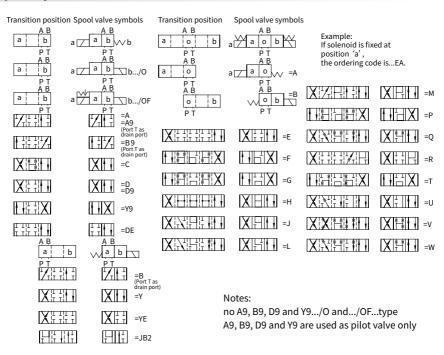

This type contains 2 switching positions and 2 directional control valves without locating mechanism explosion protection solenoid.

Type G4WE6...L6X/OFB2... pulse valve (limited to functions A, C and D).


It contains 2 switching positions, 2 explosion protection solenoids and 1 directional control valve with locating mechanism. 2 switching positions are fixed separately, so it is unnecessary to continuously electrify explosion protection solenoid.

Cartridge throttle

The cartridge throttle is necessary since the actual flow may be larger than the performance limits of the valve during switching process. This cartridge throttle is inserted in the P channel of the directional control valve.



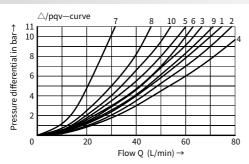
Ordering code

Note: G1 Explosion protection grade EX d | Mb; G2 Explosion protection grade EX d II C T4 Gb

Spool symbols

Technical data

Fixing position			Optional	
Environment temperature range °C		°C	-30 to +50 (NBR seal)	
Environment tempe	erature range		-20 to +50 (FKM seal)	
Weight	Single solenoid	kg	2.6	
weight	Double solenoids	kg	4.3	
	Port P, A, B	bar	350	
May aparating	Port T	bar	210	
Max.operating			when the operating pressure exceeds the	
pressure			permission value, spool symbol A and B	
			must make the port T for draining	
Max. flow-rate		L/min	80	
Flow cross section	VersionQ	mm²	About 6% of nominal area	
(switching neutral position)	VersionW	mm²	About 3% of nominal area	
Fluid			Mineral oil suitable for NBR and FKM seal	
riuiu			Phosphate ester for FKM seal	
Eluid tomporaturo r	200	°C	-30 to +80 (NBR seal)	
Fluid temperature range °0		C	-20 to +80 (FKM seal)	
Viscosity range mm²/s		mm²/s	2.8 to 500	
Degree of contamination			Maximum permissible degree of fluid contamination:	
			Class 9. NAS 1638 or 20/18/15, ISO4406	


Electrical data

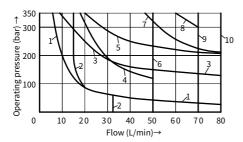
Type of voltage			DC
Available voltage		V	12, 24, 36, 110
Permissible voltage (deviation	n)	%	-15 to +10
Input power		W	30
Operation mode of solenoid			Continuous working
Switched time	ON	ms	25 to 45
Accord with ISO 6403	OFF	ms	10 to 25
Switched frequency	·	times/h	To 15000
Max. coils tamperature		°C	+150

Caution: with electrical connections the protective conductor (PE $\stackrel{\bot}{=}$) must be connected according to the relevant regulations.

Characteristic curves

(Measured at ϑ_{oil} =40°C \pm 5°C, using HLP46)

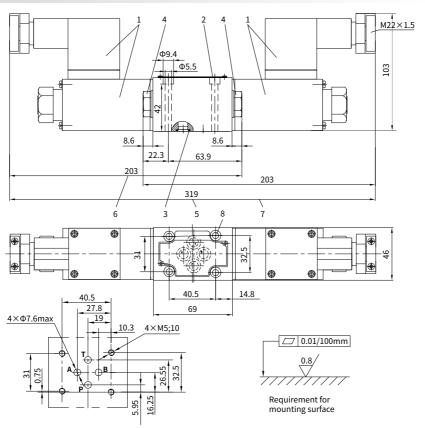
Spool	Flow direction			
Spool symbol	$P \rightarrow A$	$P\toB$	$A \rightarrow T$	$B \rightarrow T$
A B C	3	3	-	-
С	1	1	3	1
DY	1 5 3	1 5 3	3	3
Е	3	3	1	1
F	1	3	1	1
T	10	10	9	9
Н	2	4	2	2
JQ	1	3	2	1
L	10 2 1 3 2 3 5	3	2 2 4 3	9
М	2	4	3	3
Р	3	1	1	1
R	5	5	4	-
V	1	4 1 5 2 1 3	1	1
W	1 1 3	1	1 2 9	2
U	3	3	9	4
G	6	6	9	9


- 7 Function "R" of valve element is at switching position B → A
- 8 Function "G" and "T" of valve element is at neutral position $P \rightarrow T$
- 9 Function "H" of valve element is at neutral position P → T

Performance limits (Measured at ϑ_{oil} =40°C \pm 5°C, using HLP46)

The Performance limited is measured when the solenoids under working temperature, the voltage is below 15% of the standard voltage and T is free from back pressure.

The working limit given is used for flow in two directions only (such as $P \to A$ flow of $B \to T$ backflow). Due to the flow forces acting within the valves, the permissible switching power limits may be considerably lower with only one direction of flow (e.g. $P \rightarrow A$ while port B is blocked) (In such cases, please consult us!)


The switching power limit was established while the solenoids were at operating temperature, at 10 % under voltage and without tank pre-loading.

Curve	Spool symbol		
1	A, B ₁₎		
2	V		
3	A, B		
4	F, P		
5	J		
6	G, H, T		
7	A/O, A/OF, L, U		
8	C, D, Y		
9	М		
10	E, R ₂₎ , C/O, C/OF		
	D/O, D/OF, Q, W		

Note: 1) Flow back to the fuel tank from the executive component

Unit dimensions (Dimensions in mm)

- 1 Explosion protection solenoid
- 2 Copper nameplate
- 3 R-ring $9.81 \times 1.5 \times 1.78$ or O-ring 9.25×1.78
- 4 End cap used for 1 electrosolenoid valve
- 5 Dimensions of 3-position valve
- 6 Dimensions of 2-position valve, solenoids at end A
- 7 Dimensions of 2-position valve, solenoids at end B

8 Valve fixing screws:

M5×50 GB/T70.1-10.9 Tightening torque, M_A=8.9Nm must be ordered separately.

It must be ordered separately, if connection plate is needed .Type:

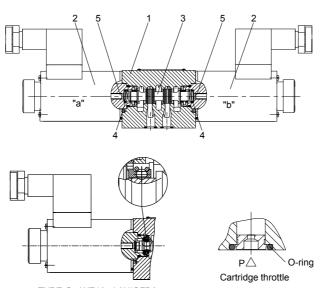
G341/01(G1/4); G341/02(M14×1.5) G342/01(G3/8); G342/02(M18×1.5) $G502/01(G1/2); G502/02(M22 \times 1.5)$

2.22

4/3, 4/2 and 3/2 explosion-proof solenoid directional valve

Type G...WE10...L3X

Size (NG) 10 Up to 315 bar Up to 120 L/min



Contents	
Function and configuration	02
Ordering code	03
Spool symbols	03
Technical data	04
Electrical data	04
Characteristic curves	05
Performance limits	05
Unit dimensions	06

Features

- Directly operated type explosion-resistant solenoid operation direction slide valve is used as the standard type
- DIN24 340 A type on the mounting surface ISO 4401 and CETOP-RP 121H
- Wet-type DC explosion protection solenoid
- 90° rotatable explosion protection solenoid
- Pressure-tight chamber needs not to be opened when coil is to be replaced

Function and configuration

TYPE:G...WE10...L3X/OFB2...

GWE type directional control valve is the directional valve of explosion protection solenoid used to control start, stop and flow direction of oil fluid.

The directional control valves consist of housing (1), one or two solenoids (2), the control spool (3), and one or two return springs (4).

In the de-energised condition the control spool (3) is held in the neutral or initial position by means of return springs (4) (except for pulse spools). The control spool (3) is actuated via wet pin solenoids (2).

To guarantee satisfactory operation care should be taken to ensure that the solenoid pressure chamber is filled with oil.

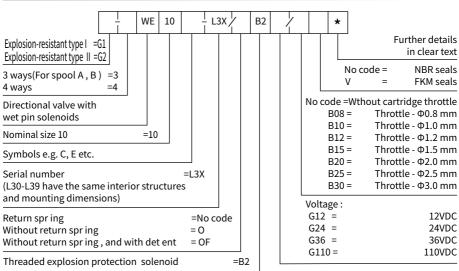
The control spool(3) is moved to the expected position by solenoid(2) and pushing rod(5), and this gives free-flow from P to A and B to T or P to B and A to T.

When the explosion protection solenoid(2) is powered off, control valve element (3) is pushed to the initial position by reset spring (4).

Type GWE 10 . L3X / O B2... (Limited to valve element A, C and D)

This type is dual explosion-resistant solenoid 2-position directional valve without a locating mechanism, one of explosion protection solenoids must be powered on in any position, it has not a specific switching position under power-off position.

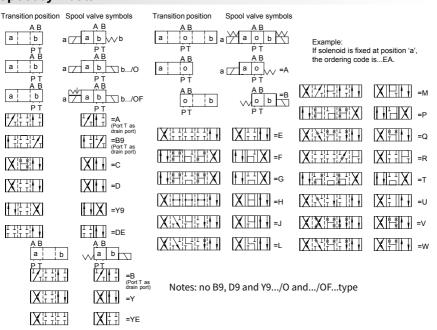
Type GWE 10 . L3X / OF B2... (Limited to valve element A, C and D)


This type is dual explosion-resistant solenoid 2-position directional valve with a locator, the valve element can be held at any position and it is unnecessary to continuously electrify the solenoid.

Cartridge throttle

The cartridge throttle is necessary since actual flow may be larger than the performance limits of the valve during switching process.

This cartridge throttle is inserted in the P channel of the directional control valve.


Ordering code

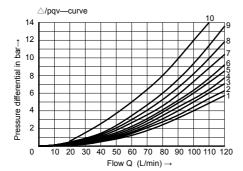
Note: G1 Explosion protection grade EX d | Mb;

G2 Explosion protection grade EX d II C T4 Gb

Spool symbols

Technical data

Fixing position			Optional
Environment temperature range °C		°C	-30 to +50 (NBR seal)
			-20 to +50 (FKM seal)
Weight	Single solenoid	kg	5.9
weight	Double solenoids	kg	8.9
	Port P, A, B	bar	315
May aparating	Port T	bar	210
Max.operating			when the operating pressure exceeds the
pressure			permission value, spool symbol A and B
			must make the port T for draining
Max. flow-rate		L/min	120
Flow cross section	Version V	mm²	$11(A/B \rightarrow T); 10.3(P \rightarrow A/B)$
(switching neutral	Version W	mm²	2.5(A/B → T)
position)	Version Q	mm ²	$5.5(A/B \rightarrow T)$
Fluid			Mineral oil suitable for NBR and FKM seal
Fluid			Phosphate ester for FKM seal
Fluid tomporature r	an go	°C	-30 to +80 (NBR seal)
Fluid temperature range		C	-20 to +80 (FKM seal)
Viscosity range		mm²/s	2.8 to 500
Degree of contamination			Maximum permissible degree of fluid contamination:
			Class 9. NAS 1638 or 20/18/15, ISO4406


Electrical data

Type of voltage		DC	
Available voltages		V	12, 24, 36, 110
Voltage tolerance (nominal volta	age)	%	-15to+10
Power consumption		W	35
Duty cycle			Continuous
Switching time to ISO 6403	ON	ms	45 to 60
	OFF	ms	20 to 30
Switched frequency		times/h	To 15000
Protection class according to DIN 40050			IP65
Max. coils tamperature		°C	+150

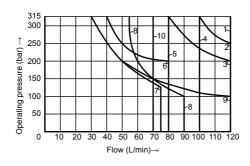
Caution: with electrical connections the protective conductor (PE $\frac{\bot}{=}$) must be connected according to the relevant regulations.

Characteristic curves

(Measured at ϑ_{oil} =40°C \pm 5°C, using HLP46)

Switching position		$P \rightarrow A$	$B \rightarrow A$	$A \rightarrow T$	$P \rightarrow T$
R		-	9	-	-
Switching position	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	$A\toT$	$P \rightarrow T$
F	4	-	-	9	9
P	-	5	8	-	10
G, T			-	-	9
Н			-	-	3

Spool	Flow direction			
symbol	$P \rightarrow A$	$P \rightarrow B$	$A\toT$	$B \rightarrow T$
A、B	3	3	-	-
С	3	3	4	5
D、Y	5	5	6	6
E	1	1	4	4
F	2	3	7	4
G	3	3	6	7
Н	1	1	6	7
J	1	1	3	3
L	2	2	3	5
М	1	1	4	5
Р	4	2	5	7
Q	1	2	1	3
R	3	6	4	-
T	3	3	6	7
U、V	2	2	3	3
W	2	2	4	5

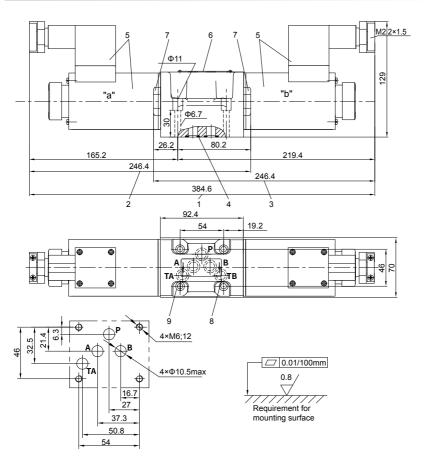

Performance limits

(Measured at ϑ_{oil} =40°C \pm 5°C, using HLP46)

The specified switching performance limits are valid for use with two directions of flow (e.g. from $P \rightarrow A$ and simultaneous return flow from $B \rightarrow T$).

Due to the flow forces acting within the valve, the permissible switching performance limits may be significantly lower with only one direction of flow (e.g. from $P \rightarrow A$, while port B is blocked)!In such a case, please consult us!

The switching performance limits were determined while the solenoids were at operating temperature, 10% undervoltage and without tank pre-loading.


Curve	Spool symbol		
	C,C/O,C/OF		
1	D,D/O,D/OF		
	Y,M		
2	E		
3	A/O,A/OF		
	L,U,J,Q,W		
4	Н		
5 1)	R,L2),U2)		
6	G		
7	Т		
8	F,P		
9	A,B		
10	V		

Notes:

- 1) Return flow (independent of area ratio)
- 2) Only suitable for neutral position

Unit dimensions

(Dimensions in mm)

- 1 Dimensions of 3-position valve
- 2 Dimensions of 2-position valve, solenoids at end A
- 3 Dimensions of 2-position valve, solenoids at end B
- 4 R-shaped ring 13×1.6×2 or O-ring 12×2
- 5 Explosion protection solenoid
- 6 Copper nameplate
- 7 End cap used for 1 electrosolenoid valve
- 8 Fix additional port TB on the manifold when necessary.

9 Valve fixing screws: M6×40 GB/T 70.1-10.9, Tightening torque, M_A=15.5Nm, must be ordered separately.

It must be ordered separately, if connection plate is needed Type:

G66/02(M18×1.5) G66/01(G3/8); G67/01(G1/2); G67/02(M22×1.5) G534/01(G3/4); G534/02(M27×2)